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INTRODUCTION 

High  power  lasers  have  potential  in  space  power  transmission  and  spacecraft 
propulsion.  Of  the  several  options  for  the  generation  of  laser  beams  in  space,  the 
direct  conversion  of  solar  radiant  energy  into  a  population  inversion  appears  partic- 
ularly  attractive.  Direct  solar  pumping  for  space  power  applications  was  first  dem- 
onstrated  in  alkyliodide  gases.  To  develop this  photochemical  laser  system  further, 
some  attention  must  be  given to the  chemical  reversibility  and  reprocessing  require- 
ments  in  scaling  to  large  space  systems. 

Although  the  photochemical  processes  of  alkyliodide  gases  have  been  greatly 
clarified  in  recent  years,  considerable  uncertainty  in  specific  rate  coefficients 
adversely  impact  models  used  for  scaling  of  the  photodissociative 1 . 3 - p  iodine  laser 
system  (ref. 1 ) .  Through  laser  kinetics,  the  characteristic  output  of  an  experimen- 
tal laser  can  be  related  to  specific  rate  coefficients.  In  this  way,  critical  coef- 
ficients  can  be  identified  and  perhaps  estimated  from  experimental  lasing  of  the 
iodine  atom. The laser  experiments  to  be  analyzed  in  this  paper  were  performed  using 
n-C3F71  as  the  lasant,  a  high-pressure  xenon  arc  lamp  with  a  parabolic  reflector  as  a 
solar  simulator,  and  a  MgF2-coated  aluminum  conic  collector  to  focus  the  light  in  the 
laser  tube.  The  experimental  apparatus  and  procedures  are  described  in  reference 2. 

A  preliminary  model  of  the  iodine  laser  kinetics  (ref. 1)  has  shown  some  success 
in  predicting  the  experimental  laser  characteristics  (ref. 21, especially  the  lasing 
threshold  and  the  early  pulse  structure of the  laser  output.  The  model  developed in 
the  present  paper  accounts  for  nonuniform  light  exposure  in  the  laser  tube  and 
results  in  a  reevaluation  of  some  kinetic  coefficients. 

SOLAR-SIWLATOR  LAMP 

At  the  temporal 
in  the  region  of  the 

peak of the  solar-simulator  pulse,  the  intensity of  illumination 
laser  tube is 

C(r,R) = Co 

where  Co = 2.7 kW/cm , L = 4.75 cm, R = 0.325 cm, R is the  distance  along  the 
axis of symmetry of  the  lamp  image,  and r is the  corresponding  radial  distance. 
(Symbols used  in  this  paper  are  defined  after  the  references.)  Because  of  the  rela- 
tively  large  magnification  factors in focusing  the mall high-pressure  arc  image in 
the  laser  tube, small temporal  fluctuations  of  the  arc  plasma  cause  large  spatial 
movements  of  the  image  in  the  laser  tube. This produces  some  difficulty in interpre- 
tation  of  the  experiments  since  the  instantaneous  pump  power  in  the  laser  tube is 
generally  less  than its maximum.  Only  by  considering  many  experimental runs  can  the 
ideal  experimental  result  be  identified. The photodissociation  rates  of  the  laser 
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gases  calculated  for  the  line  width Do and  absorption  cross  section a. at  the 
line  center io are 

Ei = Si[f exp(-o  px) + (1 - f)  exp(-0.223aopx)] 
0 (2) 

where  p  is  the  alkyliodide  partial  pressure,  x  is  the  depth  of  penetration, si 
is  the  maximum  photodissociation  rate,  f  is  the  fractional  absorption  for  wave- 
lengths  near  the  line  center,  and (1 - f)  is  the  fractional  absorption  in  the 
wings.  Equation (2) does  not  explicitly  depend on  line  width Do  because  the  line 
width  is  small  compared  with  the  spectral  band  of  the  simulator  output.  Values  of 
photodissociation  parameters  from  references  3  to 5 are  given  in  table I. The 

TABLE 1.- PHOTODISSOCIATION  PARAMETERS  USED  FOR  THE  EQUIVALENT 
POWER  OF  ONE  SOLAR  CONSTANT  EXPOSURE, 1.4 kW/m2 

I n-C3F71 

bo, cm 2 ........... 
ho, nm ............ 
Do, nm ............ 
411* ............... 
s, s-1 ............ 
f ................. 

a 7.9 X 1 0 - l ~  

a272 

a12. 7 

al.O 

3.04 X 10-3 

0.652 

i-C3F71 

b275 

b14. 5 

bl .o 

3.37 X 10-3 

0.653 

C 9.14 x 1 0 - l ~  

c499 

?23.0 

0.51 

3.38 x 

0 -673 

aRef  erence 3. 
bRef  erence 4. 
CRef  erence  5. 

LASER  KINETICS 

The  basic  kinetic  processes  for  the  photodissociative  iodine  laser  are  shown in 
figure 1 including  all  known  chemical  reactions. The  kinetic  equations  on  the  center 
line  of  the  0.35-cm-radius  laser  tube  are 
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' - =  dLIR1l K, [R] [I*] + K2[R] [I] - - 
d t  

d[Rl d t  = (g) 5, [ R I I  - K1  [R] [I*] - K2[R] [I] - 2K3  [R] 2 
v i s  

rmax = COP([I* l  - :[I], 1 \  ( 1 0 )  

Kinetic rate coefficients (refs. 6 t o  21)  are given i n  table 11. The s t i m u l a t e d  
e m i s s i o n  cross section ( c m  ) is (ref 13) 2 

( 2  X 1017 + 0 . 4 4 3 [ R I ]  )-' ( 1 1 )  
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RI* R = C,F, 

Figure 1.- Energy diagram of alkyliodide photochemical laser showing 
kinetic pathways. 

TABLE 11. - MEAN KINETIC RATE COEFFICIENTS OBTAINED FROM THE LITERATURE 
AND THE ASSOCIATED UNCERTAINTY FACTORS 

factor in parentheses gives the uncertainty limits associated 1 

K ~ ,  cm3/s . . . . 
K ~ ,  cm3/s . . . . 
K ~ ,  cm3/s . . . . 
Q ~ ,  cm3/s .. .. 
Q2,  cm3/s . . . . 
cl, cm6/s .... 
c2, cm6/s .. .. 
c3, cm6/s . . . . 
c4, cm6/s . . . . 

with each rate 

i-C3F71 

4.4 x 10-13  (5.4)*1 

3.9 x 10'11 (4.3)f' 

9.0 x 10-13 (3.8)*' 

2.8 x 

1.9 x (2.6)*' 

8.8 x (1.2)*' 

8.3 x 10-32 (5.3)*1 

5.6 x (1.5)*' 

2.0 x 10-30  (4.3)*1 

J 

~ ~- 

References 

6-10 

6-1 1 

6-12 

6, 7, 13, 14 

6, 8, 12,  13,  15-19 

6, 8, 14 

6-8 

6, 8 

6,  8, 17,  20,  21 
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The  Einstein  coefficient A is 7 .7  sec”  (according  to  ref.  13),  and ‘cc, the 
optical  cavity  time  constant  (ref. 2 2 ) ,  is 

-2(Lc/c) 
7 =  c l n r r  1 2  

where  LC is  the  distance (56 c m )  between  the  mirrors  forming  the  optical  cavity, 
c  is  the  velocity  of  light, r1 and r2 are  the  reflection  coefficients (0 .9775 
and 0.9975) at  the  ends  of  the  cavity  including  Brewster  window  losses, p is the 
average  photon  density  in  the  optical  cavity,  and  g  is  the  coupling  parameter  of 
the  spontaneous  emission  to  the  optical  cavity  (ref. 1) : 

2r 2 

g = -  
b 
2 

LC 

where  rb  is  the  laser  beam  width  (approximately 0.18 cm)  of  the  appropriate  oscil- 
lator  mode.  The  factor (~/2.77) 112 in  equation (9 )  is  a  geometric  factor  resulting 
from  nonuniform  pumping  and rmax is  the  stimulated  emission  rate  at  the  spatial 
peak  of  the  pump  pulse.  In  the  above  equations,  the  relaxation  of  the  hyperfine 
states  which  is  important  in  determining  threshold  (ref. 13)  and  in  influencing  the 
laser  pulsations  early  in  the  laser  pulse  has  been  ignored.  Special  attention  is  now 
given  to  the  quasi-CW  (continuous  wave)  portion  of  the  pulse  for  which  the  hyperfine 
relaxation  times  are  short  compared  with  laser  pulse  fluctuations.  Of  interest  here 
are  the  kinetic  processes  which  dominate  at  late  times  in  the  laser  output. 

After  the  initial  laser  pulsations,  the  photon  density  becomes  steady  as  gains 
and  losses  balance  each  other  within  the  cavity  and  gain  medium,  as  expressed  by 

P = (&)1’2 TmaxL - zC 

LC 

or  equivalently 

1 1 In ‘lr2 [I*] - $11 = - - 
2 1/2 ‘th 

( 1 ~ / 2 - 7 7 )  
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where  Ith is the  threshold  inversion  density.  One  may also show  that  under  quasi- 
steady-state  conditions, 

with  the  laser  output  power  density  (W/cm 2 ) given  by 

1/2 Ltm 
p = - E  r (z) v max  2.77  In  r  r 1 2  

where E,, is  the  photon  energy  and  tm  is  the  output  mirror  transmission  coeffi- 
cient.  From  equations (16 )  and  (17),  the  laser  output  clearly  depends  on  the  time- 
dependent  composition of the  gas  and  photodissociation  rate. 

Note  that  the  recombination  rate  K1[R]  is  large  compared  with  the  parent  gas 
quenching  rate Q~[RII, and  after  lasing  is  achieved,  both  are  small  compared  with 
the  photodissociation  rate  of  the  parent  gas.  Early  in  the  pump  pulse,  [I2] is 
still  small so that 

1/2 Lt, 
P = -&,,E1 [RII (+) In  r  r 

1 2  

until  late  enough  in  the  pump  pulse  that  appreciable  quenching  by  I2  commences. 
Results  for  n-C3F71  from  equation (18) are  shown  in  figure  2  in  comparison  with 
experiments  (ref.  2).  The  experimental  values  shown  are  peak  values  of  the  quasi-CW 
portion  of  the  pulse  during  several  experimental  runs  and  do  not  always  correspond to 
times  when  the  arc  was  properly  focused. Also, the  present  calculations  indicate 
that  the  detectors  in  reference 2 were  saturated.  The  saturated  detector  response 
(fig.  3)  was  determined  through  calibration  with  a  flash-lamp-pumped  iodine  laser. 
The  data  used  to  evaluate  rate  coefficients  are  based  on  the  measured  recalibration 
curve  of  the  saturated  detector  response  as  shown  in  figure 3. The  late-time CW 
pulse  shape  is  then  related to the  processes  forming I2 and to the I2 quenching 
coefficient. 
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Figure 2.- Laser 
pressure in 

I I I 1 
10 20 30 40 

p, torr 

output intensity  (eq. (18)) as  a function 
comparison  with  experimental values taken 

of alkyliodide 
from reference 

P, W a t t s l c m  2 

D 

lasant 
2. 

Figure 3. - Germanium  detector calibration  curve  for the 1 . 3 - p  
iodine laser  output. 
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When  the  laser  is  in  quasi-steady-state  operation,  photodissociation  is  balanced 
by  recombination  of  the  ground  state I with  the  alkyl  radical to 
approximately 

Since  the  gain  medium  is  saturated, [R]  CJ 5[1] , so that 3 

[I3 ( 3K, ) 2E1 [ R I ]  

\ L I  

Using  equation (20) in equation ( 6 )  and  neglecting  the  small  terms 
c3, and c4, since  the [ R I ]  is  large  and I + I* recombination  is 
through  integration 

yield 

involving C1, 
slow,  yields 

which is  applicable  for  times  (t)  after  threshold  is  achieved  (tth).  Clearly  from 
equations ( 2 0 )  and (211,  the I2 quenching  rate  is 

which  displays  the  important  processes  leading  to  the  temporal  variation  of  the  late- 
time  pulse  dependence.  The  quantity q2 is  quite  uncertain  as  seen  from  the  uncer- 
tainties  of Q2, C 2 ,  and  K2 in table 11. An attempt  is  now  made  to  obtain  new 
rate  coefficients  and  uncertainty  limits  from  the  experimental  laser  data. 

mSULTS 

A laser  pulse  for  which  the  arc  plasma  was  reasonably  stationary  is  shown in 
figure 4, although  motion  of  the  arc  is  evident  after 1.6 ms. These  data  are  used  to 
derive  an  upper  bound  on  the  late-time  quenching  rate q2- For  the  kinetic  coeffi- 
cients  and  uncertainties  for  n-C3F71  listed  in  table 11, the  rate  constant  factor  in 
equation ( 2 2 )  satisfies 

1.4 X < -  Q2c2 < 3.4 x 
K2 
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SOLAR SIMULATOR 
BEAM  INTENSITY 

t EXPERIMENTAL 
L LASER OUTPUT 

W 

z 0 

r 
0 O m 2 L  SIMULATION  NUMERICAL 

I 

0 1 2 
TIME, ma 

J 
3 

Figure 4.- Predic ted  germanium de tec to r   r e sponse   i n  comparison  with 
experimental  response. 

However, t h e   p r e s e n t   k i n e t i c  model showed t h e  mean values  of table I1 f o r  Q,, c2, 
and K~ t o   r e su l t   i n   excess ive   quench ing .  New limits on these   coe f f i c i en t s   ob ta ined  
from the  experiments  of  reference 2 are shown i n   t a b l e  111. New limits on t h e  
quenching rate fac tor   ob ta ined  from t a b l e  I11 are given by 

3 . 8  x < -  < 1.9 x I O - ~ ~  Q2c 2 

K2 

TABLE 111.- PRESENT VALUES FOR LATE-TIME KINETIC RATE COEFFICIENTS 
FOR n-C3F71 I N  COMPARISON WITH PREVIOUS  ESTIMATES 

c2, cm6/s . . . . . . . 3.7 x I (2.3)*' 

Previous  publ ished  values  I 

5 x ( r e f .  15)  
3.2 x ( r e f .  6)  
2.1 x 10-l' ( ref .  16) 

(3 .1  f 0 . 5 )  x 10"' ( r e f s .  8, 17-19) 

8.5 x 10-32 ( r e f .   7 )  

~ . ~. ~ 
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The ca l cu la t ed  germanium d e t e c t o r   r e s p o n s e   t o   t h e   t h e o r e t i c a l  laser o u t   u t   f o r   t h e  
k i n e t i c  rates K2 = 2.3 X Q2 = 4.4 X and C2 = 6-9  X 10- p2 is  shown , 

i n   f i g u r e  4 i n  comparison  with  the  experimental detector response.  Note  that  because 
t h e  image  of t h e   a r c  w a s  o f f s e t  from  the laser tube axes,  only  40-percent power lev- 
e l s  were achieved. Also shown i n   t a b l e  I11 a r e   k i n e t i c   r a t e   c o e f f i c i e n t s   a s s o c i a t e d  
with  other  experiments which are c l ea r ly   i ncons i s t en t   w i th   t he   p re sen t   r e su l t s .   I n  
pa r t i cu la r ,   t he   p re sen t   va lue  of K2 l i e s  midway between the   p rev ious ly   repor ted  
values  which d i f f e r e d  by an  order  of  magnitude. The earlier values  of Q2 (refs. 6 
and   15)   d i f fe r   f rom  the   p resent   resu l t s ,   whi le  more r ecen t  work ( r e f s .  8 and 16 
t o  19) i s  cons i s t en t   w i th   ou r   r e su l t s .  Although t h e  n-C3F71 s t a b i l i z e d  I + I 
recombination  coefficient  found by Kuznetsova  and  Maslov ( r e f .   7 )  i s  cons is ten t   wi th  
the  present   value of C2, much lower  values  cannot  be  ruled  out by the   p resent  
ana lys i s .  

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
June 14, 1983 
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A 

C 

CO 

c1 

c2 

c3 

c4 

DO 

f 

K1 

K2 

K 3  

L 

LC 

P 

P 

Q1 

42 

r,R 

‘b 

rl ,r2 

SYMBOLS 

Einstein  coefficient of spontaneous  emission, s 

velocity  of  light, cm/s 

solar-simulator  intensity  of  illumination,  kW/cm2 

peak  solar-simulator  intensity,  kW/cm2 

RI  stabilized I + I* recombination  rate  coefficient,  cm6/s 

RI  stabilized I + I recombination  rate  coefficient,  cm6/s 

I2 stabilized I + I* recombination  rate  coefficient,  cm6/s 

I2 stabilized I + I recombination  rate  coefficient,  cm6/s 

photoabsorption  line  width, nm 

fractional  absorption  near  line  center 

oscillator  cavity  coupling  coefficient 

atomic  iodine  density,  cm-3 

molecular  iodine  density,  cm 

electronically  excited  atomic  iodine  density, 

R + I* recombination  rate  coefficient,  cm3/s 

R + I recombination  rate  coefficient,  cm3/s 

R + R recombination  rate  coefficient, cm’/s 

lamp  image  length  parameter,  cm 

distance  between  laser  end  mirrors,  cm 

alkyliodide  partial  pressure  at  room  temperature,  torr 

-1 

-3  

laser  output  power  density,  W/cm” 

I* quenching  coefficient  for  RI,  cm3/S 

I* quenching  coefficient  for 12, cm3/s 

cylindrical  coordinates  of  the  lamp  image, cm 

laser  beam  width  parameter, cm 

combined  reflection  coefficients  of  the  Brewster  window  and  end 
mirror  at  each  end  of  the  laser  tube 
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si 

t 

X 

'ma x 

E 
V 

h 
0 

% 
P 

Q 

U 
0 

'I; 
C 

lamp  image  width  parameter, cm 

alkyl  radical  density,  cm 

alkyl  dimer  density, ~rn'~ 

alkyliodide  density,  cm -3 

-3 

ultraviolet  and  visible  light  reflection  coefficients  for  the 
MgF2-coated  aluminum  cone 

maximum  photodissociation  rate of the  ith  chemical  Species, S-1 

time, s 
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